Arkansas Forests and Drinking Water

Lakes Appreciation Month, 2019

R. Morgan, July 1, 2019

Beaver Lake, Arkansas

Lake Appreciation Month is an annual event of the North American Lake Management Society (NALMS). During this event NALMS strives to have the Governor of every State in the United States to proclaim the month of July as Lakes Appreciation Month. Residents of the State are then encouraged to get out and enjoy the lake of their choice to show their appreciation. Arkansas has participated in the event for the last decade.

According to the world atlas ( Arkansas is home to 2340 named lakes that have a surface area of over 5 acres. The Arkansas Department of Environmental Quality (ADEQ) is responsible for oversight of water quality in publicly owned lakes in the State. ADEQ recognizes 515,635 acres of lakes in Arkansas. That does however depend on how you define ‘lake’. Some people differentiate between natural lakes and reservoirs (a body of water created by the damming of a stream). Reservoirs in that case are not considered to be lakes. NALMS definition of ‘lake’ is “a considerable body of inland water or an expanded part of a river. Using this definition, both natural lakes and reservoirs should be considered lakes.

Most of the 515,635 across of lakes in Arkansas are reservoirs. Federal, state and local agencies have all built reservoirs in the state as well as numerous private organizations and individuals. Reservoirs are built for a purpose i.e. flood control, power production, water supply, cooling, recreation, wildlife habitat, irrigation, etc. In Arkansas natural lakes consist of the ‘oxbows’ along our major rivers. An oxbow is formed when a meandering river changes course and cuts off a large loop of the river, or a meander. The cutoff meander then remains filled with water and essentially is a lake. Lake Chicot near Lake Village in S.E. Arkansas is the largest oxbow lake in North America. There are hundreds of other oxbows along the Mississippi, Arkansas, White, Red, Ouachita and other rivers. Mostly they occur in the Arkansas Delta.

Lake Ouachita, at 40,100 surface acres, is the largest lake totally within the borders of Arkansas when measured by surface area. Bull Shoals in northern Arkansas is actually a little larger at 45,440 acres, but we share that lake with Missouri. Beaver Lake near Eureka Springs has the deepest point of all lake in Arkansas at 220 feet. Greers Ferry Reservoir on the other hand has the deepest average depth at 60 feet.

It is hard to say what the smallest lake in Arkansas might be. But it is likely a plunge pool below a waterfall in either the Ozark or Ouachita Mountains. A plunge pool is the small lake formed by erosion of the creek bed at the base of a waterfall. Most plunge pools in Arkansas would be far below the 5-acre threshold to be considered as one of the 2340 lakes. The greatest use of plunge pools is likely for skinny dipping on hot summer afternoons.

Plunge Pool Lake

Determination of the cleanest lake in Arkansas is also difficult. Cleanliness has to be considered with respect to the lake’s ecoregion as well as its intended use. Water quality also changes temporally as well as locationally within a body of water. So the available data do not provide a good basis for comparison. Many people think of clarity when they think of a lake’s cleanliness.

Clarity (well actually transparency, but that is a technicality) can easily be measured with a small black and white disk called a Secchi Disk. The Secchi Disk is connected to a rope and lowered into a body of water until it disappears. The point where it disappears is measured and then referred to as the Secchi depth. A greater Secchi depth indicates clearer water. Crater Lake in Oregon is known for its extreme transparency. Secchi depths of up to 135 feet have been measured in the lake. Beaver Water District in NW Arkansas conducts Secchi Day on Beaver Lake annually in late August. During this event, citizen scientists measure Secchi Depth and collect water samples at 35 points in the lake over a two-hour period. Depths of up to 20 feet have been measured near the Beaver Dam. Closer to the headwaters however, Secchi Depths may be as little as 1 foot. For Arkansas, 20 feet is a pretty good Secchi Depth. The warm water and abundant nutrients promote growth of algae which tend to cloud the water.

Transparency is an absolute measurement, but it does not however indicate the health of a body of water. Darby Nelson in his book ‘For the Love of Lakes’ tells a story of paddling and carrying his canoe to Nellie Lake in Killarney Provincial Park Quebec. His sole purpose for the trip was to measure the Secchi depth. Nellie Lake is known for its water clarity. When he arrived at the lake Darby lowered his Secchi Disk into the water along with all 50 feet of rope that he had brought along. At the end, he could clearly see his black and white disk. Darby then goes on to tell about others who have measured Secchi depth in Nellie at over 100 feet. Lake Nellie rivals Crater Lake as the clearest lake in North America. The problem is that the reason Nellie is so clear is that it is dead. Years ago, acid rain killed off all plant an animal life. There is nothing in the lake but acid water.

I don’t know that I have a favorite Arkansas lake. I do have a fondness for the small reservoirs in the Ozark Mountains as well as for the oxbows in the White River refuge. But it is also hard to deny the pleasure of kayaking on our large reservoirs like Beaver or Ouachita, especially when you can get there on a cool quiet weekday morning. I suppose in the end my favorite lake is the one I am heading for next.

World Hydrography Day, 2019

Hydrography: The scientific description and analysis of the physical conditions, boundaries, flow, and related characteristics of surface waters such as oceans, lakes and rivers. The mapping of bodies of water. (Webster’s II New Riverside University Dictionary)

Starting in 2006, the International Hydrographic Organization has designated June 21st as World Hydrography Day. The purpose of this annual celebration is to publicize the work of hydrographers and the importance of hydrography as well as to increase the awareness about protection of safe navigation and marine life protection. So, it may be appropriate on this day in 2019 to consider the importance of hydrography as it relates to Arkansas.

Hydrography is generally considered to be a coastal science. The initiation of the Science of Hydrography in the US was possibly during 1807 when president Thomas Jefferson signed a mandate ordering a survey of our nations coast. The purpose of this survey was to provide reliable nautical charges to the maritime community for safe passage into American ports and along the US Coastline. The job of completing the survey was given to ‘Survey of the Coast’. The Survey of the Coast is now the Office of Coast Survey in the National Ocean Service of the National Oceanic and Atmospheric Administration, a division of the Department of Commerce. The survey now contains information about over 95,000 miles of US coastline.

With respect to Arkansas however, in-land hydrography is much more important. The history of in-land hydrography is not so complete as that of coastal hydrography. But there are several events that could be considered to be precursors to the science in the Americas.

A starting point might be the exploration and mapping of the Mississippi. Louis Jolliet and Jacques Marquette are credited with being the first non-native people to explore and map the Mississippi. Likely, they did not consider their expedition to be a hydrographic survey, they were more interested in the potential for trade as well as the possibility of saving souls. Actually, Marquette and Jolliet didn’t navigate the entire Mississippi. Their route started at the junction of Lakes Michigan and Huron, went up the Fox river then down the Wisconsin river to a confluence with the Mississippi on the border of Wisconsin and Minnesota. From their they canoed down river to the mouth of the Arkansas. They could determine at that point that the river flowed to the Gulf of Mexico so they turned back at that point. Exploration of the upper Mississippi was left for Henry Schoolcraft’s expedition in 1832. Then in 1861, Andrew Atkinson Humphries, with the US Army Corps of Engineers completed a topographic and hydrographic map of the Mississippi published in “Report upon the Physics and Hydraulics of the Mississippi River.

Prior to Jefferson’s mandate to survey the coast, he had already ordered exploration of inland waterways that drained the Louisiana Purchase. These were the great Voyages of Discovery including Louis and Clark’s expedition on the Missouri, Dunbar and Hunters exploration of the Ouachita, Freeman and Curtis’ expedition on the Read River and Zebulon Pikes trip up the Arkansas, all during the 1804 to 1806 time frame. A few years later, during 1818 Henry Schoolcraft explored the James and White Rivers through Missouri and Arkansas. Thomas Nuttall also explored the Arkansas River during the same time span. Once again, these explorers likely did not consider themselves to be hydrographers, but essentially, they were surveying rivers.

Many other surveyors worked for years to generate maps of our nation’s rivers as well as the topography of the country. Their work was published in the General Land Office (GLO) maps during the early to mid-1800’s. The original GLO maps can still be obtained from the Bureau of Land Management. Those maps can provide countless hours of entertaining map gazing if you are so inclined.

Today the task of hydrography falls primarily to the United States Geologic Survey (USGS). The USGS uses field surveys, remote sensing and geographic information systems to compile maps of our nations rivers as well as the watersheds that are tributary to those rivers. The data on rivers is contained in the National Hydrography Dataset (NHD) available on the agency’s website. In the NHD, stream reaches are given a unique identifier and are linked both to upstream and downstream reaches or other water bodies. The USGS also operates and maintains a series of stream gages and monitoring stations making it possible to develop hydrologic models of stream systems. Water utilities can link hydraulic and water quality models to the NHD to efficiently track the progress of a pollutant from a source down to their intake if necessary.

Watershed delineation is also a function of the USGS. In the US, watersheds are delineated in 7 nested scales designated by numeric descriptors starting with 2 digits at the largest scale down to 12 digits at the smallest scale. These numbers are referred to as the Hydrologic Unit Code (HUC). Two-digit HUC’s referred to as ‘major geographic areas’ are the major river basins such as the upper Mississippi or they may include several rivers draining into a coastal area such as the ‘Texas Gulf Coast’. There are 21 major geographic areas. The Arkansas, White and Red rivers are lumped together into region 11.

The next level in the hydrologic unit map is the ‘subregion’ and is designated by 4 digits. There are 221 subregions. The White river in Arkansas above and including the confluence with the Red River is subregion 1101. The third level is the ‘Accounting Unit’. Accounting units are nestled within or may be equivalent to the subregion. To stay with the example, the White River in Arkansas and Missouri is accounting unit 110100. There are 378 accounting units in the US. Next come ‘Cataloging Units’ designated by 8 digits. As an example, the Buffalo River in Arkansas is cataloging unit 11010005. The cataloging unit is the basic unit used by federal agencies for implementation of targeted conservation programs.

Watersheds are further divided into 10-digit ‘watersheds’ and 12-digit ‘subwatersheds. Some states have completed even smaller 14 and 16-digit HUCs. The HUC provides convenient and consistent watershed delineations. These delineations can be used to target conservation efforts by local state and federal programs. They provide a common language for hydrographers and resource managers.

Hydrographers don’t get a lot of recognition. The work is intense and requires lots of expertise. The results help track flooding, manage pollutants and keep drinking water sources safe. Give a hydrographer a big hug today!

National Drinking Water Week

Robert Morgan, PhD, PE

May, 2019

May 5 through 11, 2019 is celebrated by the American Water Works Association (AWWA) as National Drinking Water Week. The AWWA is made up of over 51,000 professionals from the water sector in America. They are considered to be the go-to source for information on drinking water.

Most of us in the United States and Canada, don’t think much about our drinking water. We go to the tap, give it a turn, and safe, healthy water magically comes out. Surprisingly, those of us in the US turn that tap to the tune of about 80 gallons per day. For a family of four, that means 320 gallons or 2,700 lbs. of water are delivered to our door every day. The cost of that service is on average across the U.S. a bit under $2 per day ( Where else can you get over a ton of material delivered to your door for less than $2. To fully appreciate our amazing water delivery system, it might be beneficial to look back at the history of water distribution over time.

One of the earliest well documented water systems was on the island of Crete in the Mediterranean Sea. The Minoans developed water collection and distribution systems as early as 2000 BCE. These systems consisted of rainfall harvesting, cisterns, aqueducts, filtering systems and terracotta pipes for distribution of water and fountains ( Water flowed under the force of gravity down from the source into the cisterns and out into the distribution system. The system was very resilient. Remnants of the piping and cisterns can still be seen on the island today. Most of the time, water was not delivered to individual homes, but to central water stations convenient to homes. Filtration and settling provided for clear and relatively odor free water. The Minoans also had common toilets and sewers to carry waste water away from their cities.

Ancient Rome carried water distribution to the next level. Water for Rome was collected in the mountains around the city and delivered to the city in the famous aqueducts. The first aqueduct was the aqua appia built in 312 BCE. The aqua appia was almost entirely underground. Water flowed entirely by gravity from the source to the city. When water arrived at the city, it was deposited in a central tank or castellum. From the castellum water was then delivered through underground pipes to baths, fountains, water basins and even some individual homes ( Much of the piping in Rome was made of lead. Lead is no longer used in water piping because of the potential public health impact. Some have hypothesized that lead in the drinking water lead to a loss of mental acuity and ultimately to the downfall of the empire. But the evidence does not support this theory. In Rome, the source water had a high hardness and water was constantly flowing. Leaching of lead out of the pipes into the water was not a problem in that situation. Waste water was allowed to overflow into gutters and channels and flow off into the Tiber River and out of town. Luckily the discharge point was downstream of the intakes.

While the Minoans and Romans were concerned about water quality. The Roman Vitruvius ( recommended criteria such as examining the health of local residents before selecting a source of water, looking for stains when a drop is placed in a brass pot and finding how quickly vegetables boiled.  However, they did not fully understand the potential for water borne disease. They did know however that clean, healthy water was essential to their well being as well as the resiliency of their society. Primarily they tried to get water that was clear and odor free. Both the Romans and the Minoans used settling tanks in their systems. These tanks provided for settling of solids from the water and resulted in a clearer product. They did nothing for removal of pathogens.

Not much progress was made in water distribution nor treatment between the fall of Rome and the industrial revolution of the 18th and 19th centuries. As a result of the industrial revolution, many people moved into cities for work in the new factories. Imagine a city of several 10’s of thousands, mostly living in wooden structures and mostly using wood or coal fires for heat and energy. Fire was the major public health hazard of the time. City leaders recognized the need for improvement and began developing piping systems to bring water into town to be available to fire fighters. Drinking water came along as a secondary consideration. Many of these water pipes were made of wood. When a fire broke out, the fire company would dig up the pipe, hack a hole in the top and pump water until the fire was under control. Afterward, they made a plug and drove it into the pipe to stop the flow of water. Hence we now have ‘fireplugs’ scattered about our water systems ( Fire fighting is still a major factor in design of water distribution systems.

During the industrial revolution, water quality when it was considered at all was determined by clarity and lack of odor. Some cities did put in slow sand filters to help clarify source water ( Paisley, Scotland is generally thought to be the site of the first filtration plant in modern times. The concept of water borne disease was still several decades away. While Typhoid Fever and Cholera were common diseases, but most of the medical profession thought disease was caused by bad air or miasmas not contaminated water.

Dr. John Snow was likely not the first physician to conceive of water borne pathogens, but he was the first to demonstration the potential. During 1853 and 1854, London, England was suffering from an epidemic of Cholera. Dr. Snow suspected a source could be found that was contaminated by the Cholera bacterium. He studiously mapped cases of Cholera across the city along with where the patients got their drinking water. In almost all of the cases, the source was a hand pump on Broad Street. Dr. Snow removed the handle and locked the pump. The Cholera epidemic quickly died out (

Dr. Snow’s evidence was impressive, but it took a couple more decades before the medical profession was willing to give up their theory of miasmas. Slowly they came around and accepted water borne pathogens as a source of disease such as Typhoid and Cholera. Then in 1908, Jersey City, NJ installed chlorination on its water treatment plant to kill pathogens that might be in the water. Basically, it was less expensive to chlorinate the water than to go out and find a new, less contaminated source. Other utilities in the US quickly followed suit. By the 1950’s, water borne disease was virtually eliminated in the US (

Drinking water in the U.S. is now delivered efficiently, economically, clean and disease free to over 90% of all Americans. The Center for Disease Control considers control of infectious disease through provision of clean water and sanitation to be one of the 10 most significant achievements in public health from the 20th. century (, So we can rest tonight knowing that our water supply will help to keep us healthy. But the job is not yet over.  Sources of drinking water are under pressure from many sides. Over use, quality degradation, potential chemical spills, and nonpoint source pollution all can impact water safety. For the Romans, source water protection meant finding a more remote source and posting Legion along the aqueduct incase the Huns invaded. Today, a site more remote from one city is just closer to another. We have to take care of what we have. In South Carolina, the Anderson Regional Joint Water Systems’ Source Water Protection Program has a vision of 220,000 source water protectors in their watershed. The implication is that every resident of the watershed has a role. Arkansas needs to generate a 3 million source water protectors.

Living Soil

“Man takes root at his feet, and at best he is no more than a potted plant in his house or carriage till he has established communication with the soil by the loving and magnetic touch of his soles to it.” John Burroughs, 1887 in Walking.

The week of April 28 through May 5 is celebrated as Stewardship Week by the National Association of Conservation Districts. The theme for 2019 is: ‘Life in the Soil, Dig Deeper’. Below is a link to the Soil Health Institute where you can view the feature video for Stewardship Week, ‘Living Soil’. One of the first points made in the video is that an acre of healthy soil has about the same living mass a two full grown elephants. My lot is roughly an acre in size. It is humbling to think that I now have responsibility to keep two elephant equivalents alive.

It may seem odd that a blog about Forests and Drinking Water has a post about soil. But when you dig deeper, it is clear that without healthy living soil, we don’t have a chance to have either healthy clean water or healthy productive forests. Microbial action in the soil is what allows soil to purify water. At the same time, the trees of the forest rely on soil microbes to process nutrients and make them available for nourishing the tree. So go out into your back yard today, grab a handful and say thanks.

The Cost of Source Water Protection

Robert Morgan, Ph.D.

January 19, 2018

Source water protection (SWP) is an essential element of any public water systems treatment scheme. Unfortunately, in many utilities the program is underfunded and often under appreciated. Funding for SWP is frequently dependent upon receipt of grants from various federal programs. An effective program requires continuity. Grant funding is good, but programs change and priorities change. Relying on grants to fund the SWP program is a recipe for failure. Making SWP programs sustainable is a priority of the American Water Works Association and other national organizations. So, just what does it cost a utility to implement an effective SWP program?

The answer to the question above is of course, it depends. It depends mostly on what is required of the SWP program. In some situations, it may be sufficient to implement a simple public outreach campaign. Other utilities have gone as far as to buy the entire watershed tributary to their source of water. Most are somewhere between those extremes. A typical program will have some element of monitoring and assessment, public awareness, education and outreach, technical and financial assistance, as well as regulatory involvement, emergency preparedness and reporting. The extent of the SWP program is unique to each utility.

Surprisingly, the extent of the program is not the only factor to consider. Utilities do not exist in a vacuum. Likely there are other organizations and entities already working in the source water protection area that contribute to the overall goal of protecting a water resource. The local regulatory atmosphere is also important. How well are current regulations insuring implementation of construction erosion and sediment control and other land use activities? How good is the local stormwater program implemented? Finally, how available are extramural funds in the vicinity? So the utilities direct cost of SWP is a reasonable question.

The following protocol is certainly not the only way to determine the cost to a utility of implementing SWP. And, it likely is not the best way. But it is the way that we derived the funding target for SWP at Beaver Water District when I managed their program:

Step 1: Develop a long-term strategic plan that lays out what needs to be done to protect the source of water. This plan should have estimates of the quantity of practices and programs needed in the particular source water protection area. Source water protection is never complete, so the plan covers some life-cycle.

Step 2: Estimate the cost of fully implementing the strategic plan over the life cycle of the strategic plan. This will likely be a shockingly large number (ours was close to 300 million). But we are not yet done.

Step 3: Using whatever accounting tool you like, determine the annualized cost of implementing the strategy. This is the effort that needs to be expended annually.

Step 4: This is the fun part. The utility is not alone in working to protect water quality in the source water protection area, and the utility is also not the only beneficiary. As an example, the Natural Resources Conservation Service is active across the county working with farmers and ranchers to implement agricultural best management practices on their land. Those practices help to protect the source water. As another example, a non-governmental organization may have interest in protecting water quality for wildlife habitat or recreation. In that case they may be both a funder and a beneficiary. Cities are implementing stormwater management programs. Construction contractors apply erosion and sediment control to their projects at their own cost. So, money is already being spent in the SWP area. The utility needs to partner with these other groups and also make a good estimate of their current effort and the value of that effort.

Step 5: Make a good realistic estimate of the funds that can be secured in grants annually. This is tricky because the programs come and go and the priorities change over time. But there should be some kind of track record that can be developed. Be conservative.

Step 6: The annualized cost from step three minus the current expenditures from step four and the sustainable grant funding from step five is the gap in funding that needs to be filled.

Step 7: Decide what percentage of that gap is the utilities fair share. Remember the utility is not the only beneficiary. It may be reasonable to expect partners to pick up their effort as well.

Step 8: The funding gap multiplied by the utilities fair share of that gap is a good estimate of the annual cost to the utility for SWP.

A utility might extend this analysis one more step by asking if their contribution to the effort might make more extramural funding available. It is possible that an influx of utility funding would generate additional grants or other efforts. If that is a realistic opportunity, then the utilities cost could be reduced a bit.

Utilities like most institutions have financial constraints. Funding for r SWP frequently is difficult to justify to boards or commissions because it is outside of what utilities are used to doing. Having a realistic estimate of costs helps the SWP manager demonstrate SWP as a business objective. In other words, it puts SWP in terms that directors understand.

Funding Source Water Protection

Bob Morgan, PhD

December 16, 2018

Source water protection (SWP) is a system of procedures, processes,and tools designed to take action to maintain or improve the quality and quantityof a drinking water source (both surface and groundwater) and protect publichealth for current and future generations. The process includes characterizingthe source of water, setting goals and objectives for that water source,developing an action plan to protect the source, implementing that plan,monitoring effectiveness and evaluating results. In Arkansas the Department ofHealth provides utilities with a source water characterization includingdelineation of the protection area and identification of potential sources ofcontamination (PSOCs) of the water source. The Rural Water Association will, onrequest, provide a SWP plan. Implementing the plan is however left up to thelocal utility. Implementing a SWP plan obviously requires some effort andexpenditure on the part of the utility. So how does the utility raise theresources and funds to implement SWP.

I divide the SWP program into two main components, program and project. Program is the ongoing day to day activities such as keeping up with the PSOCs, preparing for emergencies, building networks with stakeholders and partners, public outreach, attending public meetings, grant writing etc. etc. Some one or ones at the utility need to be responsible for the ongoing program. The only really sustainable source of funds for this program component is the utility itself. Some utilities make the SWP program a line item in their annual budget. Others, such as Beaver Water District in NW Arkansas allocate a certain portion of their revenue to SWP, i.e. $0.04 per thousand gallons sold. Then some utilities add a SWP fee onto their monthly bills. Central Arkansas Water has taken the last approach. One way or another, the utility needs to come up with the resources for this component.

The other component of SWP is implementation of projects outlined in the action plan. These projects may include public awareness, education and training, technical assistance, financial assistance, monitoring effectiveness, evaluating success, and possibly land acquisition among others. These projects may be financed by the utility itself. But frequently the cost of implementing projects is beyond the capacity of all but the largest utilities. Also, the utility likely does not have the appropriate expertise for all that has to be done. Luckily, there are a number of alternative financing mechanisms. These alternatives include: government grants, foundation grants, government assistance programs, and increasingly private financing schemes. All of these alternatives have their place.

Government grants relevant to SWP come mostly from the US Environmental Protection Agency (EPA) or the US Department of Agriculture (USDA). Government grants, such as the EPA’s section 319(h) nonpoint source pollution management grants are likely the most frequently used programs to finance SWP projects. Proposals for government grants have to be in line with the granting agencies goals for the program. The grants can be fairly large and comprehensive. However, the grants are competitive so you cannot count on them for sustainably funding projects over time. Foundation grants may be available from local, regional, or national philanthropic organizations. Foundation grants vary from a few hundred to hundreds of thousands of dollars. These grants may be more flexible than government grants. Foundations likely also have fewer restrictions on grant activities than the government grants. The key is finding a foundation whose mission is closely aligned with your SWP program. Then you need to convince the foundation that you are a good recipient of their funds. Foundation grants may be a sustainable source of funds, but usually they are better suited to individual projects.

Government assistance programs differ from grants in that in these programs, the government provides their expertise or funding directly to the consumer. For instance, the USDA’s Environmental Quality Assistance Program provides technical and financial assistance to farmers wishing to implement practices on their land that protect water quality. The United States Geological Survey has a joint funding program where they provide scientific expertise for public projects and share the cost with a local entity. The United States Corps of Engineers also works with local and state entities through providing assistance on planning of water projects. These assistance programs are often better funded than grant programs and they are more dependable year after year. The recently passed Farm Bill directs USDA conservation programs to allocate at least 10% of their funds to projects that protect sources of drinking water. Utilities can tap into these funds by cooperating with their local Conservation Districts and the National Resources Conservation Service.

Another source of government funding for SWP is from the Clean Water State Revolving Fund and the Safe Drinking Water State Revolving fund. These two funds were established by the EPA to help states implements the requirements of the Clean Water Act and the Safe Drinking Water Act respectively. The Clean Water Act deals with waste water and ambient water quality. The Safe Drinking Water Act is targeted at public water supplies. State revolving funds are capitalized by the federal government. The State then invests the funds by making loans to local government entities needing to construct new water facilities. The local government entity pays the loan off over time. Hence the fund revolves back to the State. Interest rates on State Revolving Fund loans may be very competitive. Both the Clean Water and the Safe Drinking Water Revolving Funds may be used for SWP or “Green Infrastructure” projects. States may incentivize SWP projects by giving a lower interest rate to projects with a SWP
 component. The downside is that these are still loans.

The use of private capital to fund SWP projects is a new concept. Two approaches to private capital are now in use. Green bonds are a financial instrument that provides a reduced interest rate on construction project I green infrastructure elements are included in the project. Green infrastructure may be conservation of critical tracts of land or incorporating ‘soft engineering’ such as rain gardens, green roofs, etc. These green elements help to protect water quality. A bonding company may issue ‘Green Bonds’ for the public relations value, they may see reduced risk because of the green infrastructure, or they might see opportunity to sell the bonds to conservation minded investors. Another approach to using private capital is the Forest Resilience Bond. Forest Resiliency Bonds can be used to fund large reforestation or forest restoration projects. These projects tend to be expensive and need to be done quickly. But most utilities and other entities do not have the capital to take the projects on in a reasonable time frame. In a Forest Resiliency Bond, a third party builds a collaborative of two or more entities who have stake in the restoration project and have a source of sustainable funds. Those funds could be used to pay off a bond over several years. The third entity then sells bonds to investors and provides funds to accomplish the project quickly. Investors are attracted because of the low risk of the ongoing funding for the partners.

The science of SWP will continue to advance, but basically,we know what needs to be done. The hard part is actually getting on the groundand implementing effective action plans. As you can see, resources do exist,but putting together a long-term financial plan will require thinking outsidethe box. By effectively using multiple source, sustainability can beaccomplished.

The Food, Water and Energy Nexus

November 28, 2018

Nexus: “A connection or series of connections between two things”

A nexus exists in the food, water supply and energy sectors. It takes water to make food and energy. Energy is needed secure, treat and distribute drinking water as well as collect and treat wastewater. And a good deal of energy goes into producing, processing and distributing food. These three sectors compete for the same water. Those sectors can also impact the quality of our natural resources in many ways.

In the water sector, energy is used primarily for pumping and distributing drinking water. A significant amount of energy is also used to mix, aerate and otherwise treat wastewater. Then there is also the energy required for maintenance of the process as well as the ‘embedded energy’ from construction and installation of treatment and distribution facilities. Just how much energy is used by a water utility is unique to each facility. Berryville, AR once had a source of water on top of a mountain south of town. The elevation was such that water flowed by the force of gravity down to town and throughout their distribution system. It was a spring source, so treatment was minimal. Their energy use at the time was also minimal. Most utilities on the other hand will need to pump raw untreated water from either a surface supply such as a lake or from an aquifer up to their treatment plant. Then they treat the water and pump it again to fill and pressurize their distribution system. Water is heavy. Moving and lifting water takes lots of energy. In fact, the United States Department of Energy estimated in 2006 that the water supply sector used between 3 ½ and 4% of all electrical energy produced in the US.

Roughly 80% of electrical energy in the US is mostly produced either through hydroelectric or thermoelectric processes. The remainder is produced by solar or wind energy processes. With the exception of solar panels, electricity is produced a generator. A force is required to turn the generator. In Hydroelectric power, the force is provided by moving water through a turbine that turns the generator. For thermoelectric power, coal, gas, nuclear or some other fuel is used to boil water creating steam that turns the turbine. In either case, a generous supply of water is needed. The greatest amount of water withdrawn from the environment is by the energy sector. However, most of that water is returned to the environment. Producing electricity is actually responsible for consuming about 3 ½ % of water consumed in the US each year according to the DOE. Crop irrigation is actually the largest consumer of water in the US.

From the above, it can be seen that agriculture is clearly a huge user of water. It is estimated that irrigation of crops accounts for roughly 80 % of water consumed in the US1. And that is not all of the water consumed. Water is also required to process, distribute and prepare food. Much of that processing and preparation water must be at least drinking water quality. Water use during producing, harvesting, transporting, processing etc. of food also are big energy consumers.

Clearly, the Three sectors; food, energy and water, are interconnected in many ways. It may not be as clear that these sectors also have conflicting interests. They all compete for the same water. Providing water for agriculture or energy, may take water away from water supply. Also, using water for water supply means that water is no longer available for energy or food production. And when water is used for energy production, it may no longer be available where needed for water supply or agriculture. As a local example, in Beaver Lake, Arkansas, both the Beaver Water District (BWD) and the Southwest Power Administration (SWPA) have allocations granted by the US Army Corps of Engineers (COE) to take water from the Lake. BWD takes water from the lake to supply NW Arkansas with domestic (drinking) water. SWPA uses water to produce hydroelectric power at Beaver Dam. They then distribute that power into the electric grid. Currently there is plenty of water and there is no conflict. But, some day in the future, if the region continues to grow, water production at BWD will reach the capacity of their allocation. At that point in time, BWD and the SWPA will have an inherent conflict. A prolonged drought may also cause a shortage of water potentially creating competing uses of the lake. Planning for use of the water in the lake then requires consideration of both sectors, i.e. the nexus. Now imagine that Beaver Lake was in a region where there was also a large demand for agricultural irrigation. The situation becomes complicated quickly.

So, what does all of this have to do with Forests and Drinking Water. First of all, the forestry sector is a big user of both energy and water. Back in 2006, the DOE found that pulp and paper processing, a portion of the forest sector, used 3.3% of electricity produced in the US. Roughly the same as the water sector. The amount of water required to process pulp and paper is difficult to determine. In 2002, K. Ravi used a value of 17,000 gallons per ton of pulp. That figure was not documented but is likely in the ball park. Ravi also reported that new equipment was coming on line that was more water efficient. So, let’s just say that producing pulp takes a lot of water. Water is of course used in other aspects of the forestry industry as well. Secondly, forested watersheds provide a reliable, high quality source of water for drinking water production. A nexus exists.

The Food, Water, Energy (and Forestry?) nexus is neither good nor bad. It’s existence merely indicates the need for coordination in planning among the sectors for use of the common resources. Organizations like the Arkansas Forests and Drinking Water Collaborative provide a forum where divers agencies and organizations can meet to discuss issues such as the nexus. Communication is the first step toward effective co-management.

1. US Department of Energy. 2006. Energy demands on water resources, report to congress on interdependency of Energy and Water
2. Ravi, K. 2002. Pulp and paper industry: water use and wastewater treatment trends. Frost and Sullivan Insite Report